Skip to Main Content

Degrees and Requirements

Chemical Engineering - Pitt

Dual Degree: Any Bachelor of Arts or Science Degree from La Roche with Bachelor of Science in Engineering from University of Pittsburgh.

To successfully complete the terms of the articulation agreement, the following is required:

  • must be enrolled at LRU for at least the past 2 years
  • must have a GPA of 3.0 or higher at time of application to University of Pittsburgh engineering program
  • must receive favorable recommendation from the combined degree program liaison at LRU
  • must successfully complete all science and math pre-requisite course requirements for their intended engineering  major with a grade of C or better and a GPA of 3.0 or better
    • Foundations: 46 credits
    • Mathematics: 10 credits
    • Chemistry: 10 credits
    • Advanced Science: 3 credits (choose one course from the list below)
    • Advanced Science Lab: 1 credit (choose one lab from the list below)
    • Engineering Electives: 3-4 credits (choose one course from the list below; ENGR courses offered at Pitt)
    • Technical/Professional Electives: 6 credits (choose two courses from the list below)
  • must have completed the major requirements prescribed by their LRU program prior to commencing study at the University of Pittsburgh or have a written plan in place to show how these requirements will be met at the University of Pittsburgh

Summary of Requirements

Advanced Science: 3 credits- choose one course

  • CHEM3011
    ANALYTICAL CHEMISTRY I

    CHEM3011
    ANALYTICAL CHEMISTRY I

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM1002 A study of the application of theoretical principles to quantitative analysis. The concept of chemical equilibrium is thoroughly discussed. Current analytical techniques are presented both in lecture and laboratory. Topics include the theory and practice of gravimetric analysis, volumetric analysis, spectrophotometric analysis and gas chromatography. Lecture and laboratory course.

    PREREQUISITES:

    CHEM1002 concurrent: CHEM3011L

  • CHEM3015
    POLYMER CHEMISTRY

    CHEM3015
    POLYMER CHEMISTRY

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM2016 A lecture course designed as an introduction to the field of polymer science from its origins to its place in current chemical research. Content will include the synthesis and physical chemistry of the important polymer types, key concepts of macromolecular science, and the role of the journal and patent literature in polymer related research and engineering.

    PREREQUISITES:

    CHEM2016

  • CHEM3026
    INORGANIC CHEMISTRY

    CHEM3026
    INORGANIC CHEMISTRY

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM2015 This course addresses structure and bonding in inorganic compounds, with an emphasis on the transition metals. It includes an introduction to group theory and related symmetry studies. The spectroscopy of inorganic compounds is also explored. A discussion of semiconductors is included.

    PREREQUISITES:

    CHEM2016

Advanced Science Lab: 1 credit- choose one course

  • CHEM2016L
    ORGANIC CHEMISTRY II - LAB

    CHEM2016L
    ORGANIC CHEMISTRY II - LAB

    Credits (Min/Max): 1/1

    PREREQUISITE: CHEM2015L Lab for CHEM2016 Organic Chemistry

    PREREQUISITES:

    CHEM2015L

  • CHEM3011L
    ANALYTICAL CHEMISTRY I - LAB

    CHEM3011L
    ANALYTICAL CHEMISTRY I - LAB

    Credits (Min/Max): 1/1

    Laboratory for CHEM3011 Analytical Chemistry I

    PREREQUISITES:

  • CHEM4033L
    PHYSICAL CHEMISTRY II - LAB

    CHEM4033L
    PHYSICAL CHEMISTRY II - LAB

    Credits (Min/Max): 1/1

    PREREQUISITE: CHEM4032L Laboratory for CHEM4033 Physical Chemistry

    PREREQUISITES:

    CHEM4032L

Chemistry: 10 credits

  • CHEM2015
    ORGANIC CHEMISTRY I

    CHEM2015
    ORGANIC CHEMISTRY I

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM1002 A study of the classification and characterization of organic compounds, their preparation, properties and reactions. The application of modern organic theories to these subjects is stressed. Topics include nomenclature, bond theory, stereochemistry, synthesis, mechanisms, and structure determination by instrumental methods. Lecture and laboratory course.

    PREREQUISITES:

    CHEM1002 concurrent: CHEM2015L

  • CHEM2015L
    ORGANIC CHEMISTRY I - LAB

    CHEM2015L
    ORGANIC CHEMISTRY I - LAB

    Credits (Min/Max): 1/1

    Laboratory for CHEM2015

    PREREQUISITES:

  • CHEM2016
    ORGANIC CHEMISTRY II

    CHEM2016
    ORGANIC CHEMISTRY II

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM2015 A study of the classification and characterization of organic compounds, their preparation, properties and reactions. The application of modern organic theories to these subjects is stressed. Topics include nomenclature, bond theory, stereochemistry, synthesis, mechanisms, and structure determination by instrumental methods. Lecture and laboratory course.

    PREREQUISITES:

    CHEM2015 concurrent: CHEM2016L

  • CHEM3036
    BIOCHEMISTRY I (BIOL3036)

    CHEM3036
    BIOCHEMISTRY I (BIOL3036)

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM2015 AND CHEM2015L An introduction to the biochemical metabolism of the living cell. Cellular structure, macromolecules, metabolic pathways, energy transformations, regulatory mechanisms and molecular genetics are discussed. Cross-listed with BIOL3036

    PREREQUISITES:

    CHEM2015

Engineering Electives: 3-4 credits- choose one course (ENGR courses offered at University of Pittsburgh)

  • CSCI2010
    PROGRAMMING II

    CSCI2010
    PROGRAMMING II

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI1010. This course is a follow-on to Programming I. Topics covered include; data structures, file input and output, and other advanced object-oriented programming concepts found in Java.

    PREREQUISITES:

    CSCI1010

  • CSCI2010L
    PROGRAMMING II - LAB

    CSCI2010L
    PROGRAMMING II - LAB

    Credits (Min/Max): 1/1

    Lab work for CSCI2010 Programming II

    PREREQUISITES:

    CSCI1010 & CSCI1010L & Concur: CSCI2010

  • ENGR0022
    MATERIALS STRUCTURE AND

    ENGR0022
    MATERIALS STRUCTURE AND

    Credits (Min/Max): 3/3

    PREREQUISITES:

  • ENGR0135
    STATICS AND MECHANICS OF

    ENGR0135
    STATICS AND MECHANICS OF

    Credits (Min/Max): 3/3

    PREREQUISITES:

Engineering/Science Elective (Pre-approved list): 3 credits

  • BIOL2025
    MICROBIOLOGY

    BIOL2025
    MICROBIOLOGY

    Credits (Min/Max): 3/3

    PREREQUISITE: BIOL1004 AND BIOL1006 An examination of the morphology and physiology of microorganisms with emphasis on their relationship to their environment. Topics include food, water, soil, industrial, and medical microbiology, microbial genetics, and microbial diversity. The laboratory work introduces the student to both the organisms and the techniques necessary to study them. Lecture and laboratory course.

    PREREQUISITES:

    BIOL1004 & BIOL1006

  • BIOL2025L
    MICROBIOLOGY - LAB

    BIOL2025L
    MICROBIOLOGY - LAB

    Credits (Min/Max): 1/1

    Laboratory for BIOL2025 Microbiology

    PREREQUISITES:

  • BIOL3013
    GENETICS

    BIOL3013
    GENETICS

    Credits (Min/Max): 3/3

    PREREQUISITE: BIOL1004 & BIOL1006 A study of the basic principles of heredity including Mendelian, molecular and population genetics. Topics will include the cellular functions that give rise to inherited traits, the genetic basis for evolution, the role of genetics in biotechnology, and the statistical basis for predicting the probability of inheriting certain traits.

    PREREQUISITES:

    BIOL1004 & BIOL1006

  • BIOL3015
    GENERAL ECOLOGY

    BIOL3015
    GENERAL ECOLOGY

    Credits (Min/Max): 4/4

    PREREQUISITE: BIOL1004 A general ecology course studying ecosystem and population dynamics. Application of these concepts is made to aquatic and terrestrial ecosystems including current environmental problems. Fieldwork is an integral part of this course. Lecture and laboratory course.

    PREREQUISITES:

    BIOL1004

  • BIOL3026
    CELL BIOLOGY

    BIOL3026
    CELL BIOLOGY

    Credits (Min/Max): 3/3

    PREREQUISITE: BIOL1004 AND BIOL1006 A survey course in cell biology. The ultra structure of the Eukaryotic plant and animal cell are examined and related to cell function. Special emphasis is placed on membrane structure and functions.

    PREREQUISITES:

    BIOL1004 & BIOL1006

  • BIOL3036
    BIOCHEMISTRY I (CHEM3036)

    BIOL3036
    BIOCHEMISTRY I (CHEM3036)

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM2015L AND CHEM2015 An introduction to the biochemical metabolism of the living cell. Cellular structure, macromolecules, metabolic pathways, energy transformations, regulatory mechanisms and molecular genetics are discussed. Cross-listed with CHEM3036

    PREREQUISITES:

    CHEM2015

  • BIOL4019
    IMMUNOLOGY

    BIOL4019
    IMMUNOLOGY

    Credits (Min/Max): 3/3

    PREREQUISITE: BIOL1004, CHEM2004, BIOL1006 This course involves the description and development of the immune system, which includes the chemical, molecular, and cellular basis of immune reactions. The genetic and chemical control of the immune response is a recurrent theme of the course. Major topics covered in the course include specific immunities, types of hypersensitivity, autoimmunity, transplantation and rejection and immune disorders and deficiencies.

    PREREQUISITES:

    BIOL1004 & BIOL1006 & CHEM1002

  • BIOL4030
    MOLECULAR BIOLOGY

    BIOL4030
    MOLECULAR BIOLOGY

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM2016L, BIOL1004, BIOL1006, CHEM2016 Molecular Biology is an introduction to the study of selected biological processes from a molecular perspective. Both eukaryotes and prokaryotes will be included. The molecular basis of the biosynthesis of macromolecules, intercellular and intracellular communication, genetics, immunology, infectious diseases and cancer will be discussed.

    PREREQUISITES:

    BIOL1004 & BIOL1006 & CHEM2016 & CHEM2016L

  • CSCI2010
    PROGRAMMING II

    CSCI2010
    PROGRAMMING II

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI1010. This course is a follow-on to Programming I. Topics covered include; data structures, file input and output, and other advanced object-oriented programming concepts found in Java.

    PREREQUISITES:

    CSCI1010

  • CSCI2010L
    PROGRAMMING II - LAB

    CSCI2010L
    PROGRAMMING II - LAB

    Credits (Min/Max): 1/1

    Lab work for CSCI2010 Programming II

    PREREQUISITES:

    CSCI1010 & CSCI1010L & Concur: CSCI2010

  • CSCI2020
    ALGORITHM ANALYSIS

    CSCI2020
    ALGORITHM ANALYSIS

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI2010 This course teaches techniques of programming utilizing data structures such as lists, stacks, and queues and algorithmic approaches such as recursion, searching and sorting. These techniques are learned through programming exercises as well as classroom study.N×

    PREREQUISITES:

    CSCI2010

  • CSCI2025
    SYSTEMS PROGRAMMING

    CSCI2025
    SYSTEMS PROGRAMMING

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI2010 This course will introduce the students to the important systems language,C,and to several topics related to the hardware and software environment. These are issues related to system interfaces and software synchronization provided by operating systems, the linkage of operating system services to application software, and the fundamental mechanisms for computer communications.

    PREREQUISITES:

    CSCI2010 & Concur: CSCI2025L

  • CSCI2025L
    SYSTEMS PROGRAMMING - LAB

    CSCI2025L
    SYSTEMS PROGRAMMING - LAB

    Credits (Min/Max): 1/1

    PREREQUISITE: CSCI2010 This course will provide the hands-on laboratory component to the Systems Programming course which will introduce the students to the important systems language,C,and to several topics related to the hardware and software environment. These are issues related to system interfaces and software synchronization provided by the operating system, the linkage of operating system services to application software, and the fundamental mechanisms for computer communications.

    PREREQUISITES:

  • CSCI2055
    DATABASE-SYSTEMS THEORY

    CSCI2055
    DATABASE-SYSTEMS THEORY

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI1010 This course is designed to present the essential concepts, principles, techniques, and mechanisms for the design, analysis, use, and implementation of computerized database systems. Key information management concepts and techniques are examined: database modeling and representation; information interfaces - access, query, and manipulation, implementation structures, and issues of distribution. The database and information management system technology examined in this course represents the state-of-the-art, including traditional approaches as well as recent research developments. The course should allow the student to understand, use, and build practical database systems. The course is intended to provide a basic understanding of the issues and problems involved in database systems, a knowledge of current practical techniques for satisfying the needs of such a system, and an indication of the current research approaches that are likely to provide a basis for tomorrow's solutions.

    PREREQUISITES:

    CSCI1010

  • CSCI3040
    OPERATING SYSTEMS

    CSCI3040
    OPERATING SYSTEMS

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI2035 This course is an in-depth study of modern operating systems. Students will learn about the services provided by an operating system, how to use these services and how the services are implemented. Topics covered include: Initialization (boot), Processes, Controlling shared resources, Memory, Bulk storage systems, and Network Communications (TCP/IP) as they relate to the computer operating system.

    PREREQUISITES:

    CSCI2035

  • CSCI4050
    NUMERICAL COMPUTING I

    CSCI4050
    NUMERICAL COMPUTING I

    Credits (Min/Max): 3/3

    A survey of numerical techniques for numerically solving a variety of mathematical problems with an emphasis on application as opposed to theory. Topics to be covered include: sources of error in numerical computations, solving non-linear equations, solving sets of simultaneous equations, interpolating polynomials, numerical integration and numerical differentiation.

    PREREQUISITES:

  • CSCI4055
    ADVANCED DATABASE THEORY

    CSCI4055
    ADVANCED DATABASE THEORY

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI2055 This course is a continuation of Database-Systems Theory. It concentrates on object-oriented database design, object relational design, data warehousing, data marts, and data mining. Emphasis will be placed on modeling languages such as UML, ODMG, as well as ODL and SQL3 standards. Also, Online Analytical Processing and its relationship to data warehousing, data mining, and decision support systems will be discussed.

    PREREQUISITES:

    CSCI2055

  • MATH2050
    DISCRETE MATHEMATICS I

    MATH2050
    DISCRETE MATHEMATICS I

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH1032 A basic course dealing with mathematics applicable to computer science. It provides an introduction to mathematical methods and covers such topics as: enumeration, set theory, mathematical logic, proof techniques, number systems, functions and relations, graphs and digraphs, trees, combinatorics, basic algebraic structures, recurrence relations, Boolean algebra, and analysis of algorithms.

    PREREQUISITES:

    MATH1032

  • MATH2051
    DISCRETE MATHEMATICS II

    MATH2051
    DISCRETE MATHEMATICS II

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH2050 AND CSCI2017 A continuation of MATH1014. Topics to be covered will include some or all of the following: integers and integers Mod n; counting techniques, combinatorics, and discrete probability; graphs, trees, and relations; Boolean algebras; and models of computation such as grammars, finite-state machines, and Turing machines.

    PREREQUISITES:

    MATH2050

  • MATH3045
    PROBABILITY AND STATISTICS II

    MATH3045
    PROBABILITY AND STATISTICS II

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH3040 A detailed study of topics in statistics: comparison of classical and Bavesian methods in conditional probability and estimation of parametrics, non-linear regression, multiple, partial and rank correlation, indices, time series, analyses of variance for two-way classification with and without interaction, design of experiments, reliability and validity of measurements and non-parametric tests.

    PREREQUISITES:

    MATH3040

  • MATH4003
    HISTORY OF MATHEMATICS

    MATH4003
    HISTORY OF MATHEMATICS

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH2031 A survey course in the development of modern mathematics. Beginning with the rudimentary mathematical concepts developed in prehistoric times, mathematics grew sometimes slowly and sometimes rapidly with the insights of various cultures. In this course we trace this development through ancient Mesopotamia and Egypt, classical Greece, Arabic and Hindu cultures of the Dark and Middle Ages, the European Renaissance and on into the modern times. Special attention will be paid to major developments such as the emergence of mathematics as an organized, reasoned and independent discipline in Classical Greece; the emergence and development of major areas of mathematics such as of algebra, trigonometry, productive geometry, calculus, analytic geometry infinite series, non-Euclidean geometry; and how developments in mathematical thought have shaped the modern world.

    PREREQUISITES:

    MATH2031

  • MATH4015
    MODERN ABSTRACT ALGEBRA

    MATH4015
    MODERN ABSTRACT ALGEBRA

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH2031 An introduction to algebraic concepts such as groups, rings, integral domains and fields. The elementary number systems occupy a central place. Mappings, especially homorphisms, are introduced early and emphasized through out the course.

    PREREQUISITES:

  • MATH4020
    GEOMETRY

    MATH4020
    GEOMETRY

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH2030 An overview of geometry in the light of modern trends with attention to axiomatic structure, including an introduction to hyperbolic and elliptic figures as geometric structures together with an overview of projective geometry.

    PREREQUISITES:

    MATH2030

  • MATH4035
    REAL ANALYSIS

    MATH4035
    REAL ANALYSIS

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH2031 An introductory to classical (real) analysis. Includes a rigorous treatment of logic, set theory, functions, countable and uncountable sets, the real number system, metric spaces, sequences, series, differentiation and integration.

    PREREQUISITES:

    MATH2031

Foundation Courses (Includes 18 credits of Humanities and Social Science courses): 46 credits

  • CHEM1001
    GENERAL CHEMISTRY I

    CHEM1001
    GENERAL CHEMISTRY I

    Credits (Min/Max): 3/3

    A study of the basic principles governing matter, energy and matter-energy interaction. Topics include atomic structure, bonding theory, aggregated states of matter, stoichiometry, thermodynamics, chemical kinetics, chemical equilibrium and electrochemistry.

    PREREQUISITES:

    Concurrent: CHEM1003

  • CHEM1002
    GENERAL CHEMISTRY II

    CHEM1002
    GENERAL CHEMISTRY II

    Credits (Min/Max): 3/3

    PREREQUISITE: CHEM1001 A study of the basic principles governing matter, energy and matter-energy interaction. Topics include atomic structure, bonding theory, aggregated states of matter, stoichiometry, thermodynamics, chemical kinetics, chemical equilibrium and electrochemistry.

    PREREQUISITES:

    Concurrent: CHEM1004

  • CHEM1003
    GENERAL CHEMISTRY I - LAB

    CHEM1003
    GENERAL CHEMISTRY I - LAB

    Credits (Min/Max): 1/1

    A series of experiments related to the content of CHEM1001 emphasizing laboratory techniques and familiarization with basic laboratory equipment. Open to all science majors and non-science majors with a strong interest in chemistry or a professional need.

    PREREQUISITES:

  • CHEM1004
    GENERAL CHEMISTRY II - LAB

    CHEM1004
    GENERAL CHEMISTRY II - LAB

    Credits (Min/Max): 1/1

    PREREQUISITE: CHEM1003 A series of experiments related to the content of CHEM1002, emphasizing laboratory techniques and familiarization with basic laboratory equipment. Open to all science majors and non-science majors with a strong interest in chemistry or a professional need.

    PREREQUISITES:

  • CSCI1010
    PROGRAMMING I

    CSCI1010
    PROGRAMMING I

    Credits (Min/Max): 3/3

    PREREQUISITE: CSCI1002 This course introduces the art of algorithm design and problem solving in the context of computer programming. The basic structure and logic of the Java language is presented. Topics covered include data types and operators, control flow, repetition and loop statements, arrays and pointers. Good programming practices will be taught and encouraged.

    PREREQUISITES:

    CSCI1002 or SLSC1005 or SLSC1012 & Concur: CSCI1010L

  • CSCI1010L
    PROGRAMMING I - LAB

    CSCI1010L
    PROGRAMMING I - LAB

    Credits (Min/Max): 1/1

    Lab work for CSCI1010 Programming I.

    PREREQUISITES:

  • MATH1032
    ANALYTIC GEOMETRY AND CALCULUS I

    MATH1032
    ANALYTIC GEOMETRY AND CALCULUS I

    Credits (Min/Max): 4/4

    PREREQUISITE: MATH1010 The first semester of a three-semester integrated course in the elements of analytic geometry and differential and integral calculus. Included are the concept and applications of the derivative of a function of a single variable, differentiation of polynomials and the trigonometric functions, the chain, product and quotient rules, implicit differentiation, and differentials. Concludes with anti-differentiation, integration, area under graphs of functions and applications.

    PREREQUISITES:

    MATH1010

  • MATH1033
    ANALYTIC GEOMETRY AND CALCULUS

    MATH1033
    ANALYTIC GEOMETRY AND CALCULUS

    Credits (Min/Max): 4/4

    PREREQUISITE: MATH1032 A continuation of MATH1032 including applications of the definite integral, area, arc length, volumes and surface area, centroids, average value and theorem of the mean for definite integrals. Derivatives and integrals of transcendental functions are followed by techniques of integration, L'Hopital's Rule and indeterminate forms and improper integrals. Also included are conic sections and polar coordinates.

    PREREQUISITES:

    MATH1032

  • PHYS1032
    GENERAL PHYSICS I

    PHYS1032
    GENERAL PHYSICS I

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH1032 This is the first of a three-semester introduction to calculus-based physics stressing experimental and problem-solving techniques. Concepts covered are mechanics, kinematics, Newton’s laws of motion, conservation laws, rotational motion, gravitation, oscillation, and wave/acoustics.

    PREREQUISITES:

    MATH1032, Coreq: PHYS1032L

  • PHYS1032L
    GENERAL PHYSICS I - LAB

    PHYS1032L
    GENERAL PHYSICS I - LAB

    Credits (Min/Max): 1/1

    PREREQUISITE: MATH1032 Laboratory for PHYS1032 General Physics I

    PREREQUISITES:

  • PHYS1033
    GENERAL PHYSICS II

    PHYS1033
    GENERAL PHYSICS II

    Credits (Min/Max): 3/3

    PREREQUISITE: PHYS1032 The second of a three-semester introduction to calculus-based physics. Concepts covered are thermal properties and electromagnetism: thermo dynamics, electricity, magnetism, electromagnetic wave, geometrical optics, and physics optics.

    PREREQUISITES:

    PHYS1032, Coreq: PHYS1033L

  • PHYS1033L
    GENERAL PHYSICS II - LAB

    PHYS1033L
    GENERAL PHYSICS II - LAB

    Credits (Min/Max): 1/1

    Laboratory for PHYS1033 General Physics II

    PREREQUISITES:

Mathematics: 10 credits

  • MATH2030
    ANALYTIC GEOMETRY AND CALC III

    MATH2030
    ANALYTIC GEOMETRY AND CALC III

    Credits (Min/Max): 4/4

    PREREQUISITE: MATH1010 A continuation of MATH1033 including a study of vectors, parametric equations, solid analytic geometry and functions of several variables. Includes partial differentiation, total differentials, multiple integrals and surface and line integrals, the theorems of Gauss and Stokes, and infinite series.

    PREREQUISITES:

    MATH1033

  • MATH2031
    ORDINARY DIFFERENTIAL EQUATIONS

    MATH2031
    ORDINARY DIFFERENTIAL EQUATIONS

    Credits (Min/Max): 3/3

    PREREQUISITE: MATH2030 A study of first and second order differential equations, infinite series, Laplace transforms and power series together with existence of solution and uniqueness theorems.

    PREREQUISITES:

    MATH2030

  • MATH3040
    PROBABILITY AND STATISTICS I

    MATH3040
    PROBABILITY AND STATISTICS I

    Credits (Min/Max): 3/3

    A calculus-based first course in probability and statistics for science and honors students. Various discrete and continuous probability distributions will be examined including the binomial, multinomial, Poisson, uniform, exponential, gamma and normal distributions. Mathematical expectation, moment generating functions, linear combinations of random variables, sampling distributions, point estimation, confidence intervals, hypothesis testing, analysis of variance, regression, correlation and the method of least squares will also be examined.

    PREREQUISITES: